Predicting short-term thromboembolic risk following Roux-en-Y gastric bypass using supervised machine learning

Authors

Hassam Ali, Department of Gastroenterology, East Carolina University Brody School of Medicine, Greenville, NC 27834, United States.
Faisal Inayat, Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Punjab 54550, Pakistan.
Vishali Moond, Department of Internal Medicine, Saint Peter's University Hospital and Robert Wood Johnson Medical School, New Brunswick, NJ 08901, United States.
Ahtshamullah Chaudhry, Department of Internal Medicine, St. Dominic's Hospital, Jackson, MS 39216, United States.
Arslan Afzal, Department of Gastroenterology, East Carolina University Brody School of Medicine, Greenville, NC 27834, United States.
Zauraiz Anjum, Rochester Regional HealthFollow
Hamza Tahir, Department of Internal Medicine, Jefferson Einstein Hospital, Philadelphia, PA 19141, United States.
Muhammad Sajeel Anwar, Department of Internal Medicine, UHS Wilson Medical Center, Johnson, NY 13790, United States.
Dushyant Singh Dahiya, Division of Gastroenterology, Hepatology and Motility, The University of Kansas School of Medicine, Kansas, KS 66160, United States.
Muhammad Sohaib Afzal, Department of Internal Medicine, Louisiana State University Health, Shreveport, LA 71103, United States.
Gul Nawaz, Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Punjab 54550, Pakistan.
Amir H. Sohail, Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, United States.
Muhammad Aziz, Department of Gastroenterology and Hepatology, The University of Toledo, Toledo, OH 43606, United States.

Department

Medicine

Document Type

Article

Publication Title

World Journal of Gastrointestinal Surgery

Abstract

Background: Roux-en-Y gastric bypass (RYGB) is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity. It aids in significant weight loss and improves obesity-related medical conditions. Despite its effectiveness, postoperative care still has challenges. Clinical evidence shows that venous thromboembolism (VTE) is a leading cause of 30-d morbidity and mortality after RYGB. Therefore, a clear unmet need exists for a tailored risk assessment tool for VTE in RYGB candidates.

Aim: To develop and internally validate a scoring system determining the individualized risk of 30-d VTE in patients undergoing RYGB.

Methods: Using the 2016-2021 Metabolic and Bariatric Surgery Accreditation Quality Improvement Program, data from 6526 patients (body mass index ≥ 40 kg/m2) who underwent RYGB were analyzed. A backward elimination multivariate analysis identified predictors of VTE characterized by pulmonary embolism and/or deep venous thrombosis within 30 d of RYGB. The resultant risk scores were derived from the coefficients of statistically significant variables. The performance of the model was evaluated using receiver operating curves through 5-fold cross-validation.

Results: Of the 26 initial variables, six predictors were identified. These included a history of chronic obstructive pulmonary disease with a regression coefficient (Coef) of 2.54 (P < 0.001), length of stay (Coef 0.08, P < 0.001), prior deep venous thrombosis (Coef 1.61, P < 0.001), hemoglobin A1c > 7% (Coef 1.19, P < 0.001), venous stasis history (Coef 1.43, P < 0.001), and preoperative anticoagulation use (Coef 1.24, P < 0.001). These variables were weighted according to their regression coefficients in an algorithm that was generated for the model predicting 30-d VTE risk post-RYGB. The risk model's area under the curve (AUC) was 0.79 [95% confidence interval (CI): 0.63-0.81], showing good discriminatory power, achieving a sensitivity of 0.60 and a specificity of 0.91. Without training, the same model performed satisfactorily in patients with laparoscopic sleeve gastrectomy with an AUC of 0.63 (95%CI: 0.62-0.64) and endoscopic sleeve gastroplasty with an AUC of 0.76 (95%CI: 0.75-0.78).

Conclusion: This simple risk model uses only six variables to assist clinicians in the preoperative risk stratification of RYGB patients, offering insights into factors that heighten the risk of VTE events.

First Page

1097

Last Page

1108

DOI

10.4240/wjgs.v16.i4.1097

Volume

16

Issue

4

Publication Date

4-27-2024

PubMed ID

38690043

Share

COinS