The Role of Artificial Intelligence in Cardiovascular Disease Risk Prediction: An Updated Review on Current Understanding and Future Research
Department
Internal Medicine
Document Type
Article
Publication Title
Current Cardiology Reviews
Abstract
Cardiovascular disease (CVD) Continues to be the leading cause of mortality worldwide, underscoring the critical need for effective prevention and management strategies. The ability to predict cardiovascular risk accurately and cost-effectively is central to improving patient outcomes and reducing the global burden of CVD. While useful, traditional tools used for risk assessment are often limited in their scope and fail to adequately account for atypical presentations and complex patient profiles. These limitations highlight the necessity for more advanced approaches, particularly integrating artificial intelligence (AI) into cardiovascular risk prediction. Our review explores the transformative role of AI in enhancing the accuracy, efficiency, and accessibility of cardiovascular risk prediction models. The implementation of AI-driven risk assessment tools has shown promising results, not only in improving CVD mortality rates but also in enhancing quality of life (QOL) markers and reducing healthcare costs. Machine learning (ML) algorithms predicted 2-year survival rates after MI with improved accuracy compared to traditional models. Deep learning (DL) forecasted hypertension risk with a 91.7% accuracy based on electronic health records. Furthermore, AI-driven ECG (Electrocardiography) analysis has demonstrated high precision in identifying left ventricular systolic dysfunction, even with noisy single-lead data from wearable devices. These tools enable more personalized treatment strategies, foster greater patient engagement, and support informed decision-making by healthcare providers. Unfortunately, the widespread adoption of AI in CVD risk assessment remains a challenge, largely due to a lack of education and acceptance among healthcare professionals. To overcome these barriers, it is crucial to promote broader education on the benefits and applications of AI in cardiovascular risk prediction. By fostering a greater understanding and acceptance of these technologies, we can accelerate their integration into clinical practice, ultimately aiming to mitigate the global impact of CVD.
First Page
112
Last Page
122
DOI
10.2174/011573403X351048250329170744
Volume
21
Issue
6
Publication Date
11-1-2025
Medical Subject Headings
Humans; Cardiovascular Diseases; Artificial Intelligence; Risk Assessment; Quality of Life; Heart Disease Risk Factors
PubMed ID
40248921
Recommended Citation
Tiwari, A., Shah, P., Kumar, H., Borse, T., Arun, A. R., Chekragari, M., Ochani, S., Shah, Y. R., Ganesh, A., Ahmed, R., Sharma, A., & Mylavarapu, M. (2025). The Role of Artificial Intelligence in Cardiovascular Disease Risk Prediction: An Updated Review on Current Understanding and Future Research. Current Cardiology Reviews, 21 (6), 112-122. https://doi.org/10.2174/011573403X351048250329170744