2022

Trauma Induced Coagulopathy

Patrick Corey

Follow this and additional works at: https://scholar.rochesterregional.org/grandrounds_rgh

Part of the [Emergency Medicine Commons](https://scholar.rochesterregional.org/grandrounds_rgh), and the [Medical Education Commons](https://scholar.rochesterregional.org/grandrounds_rgh)
Trauma Induced Coagulopathy

Patrick Corey, M.D.
Program Director, Emergency Medicine Residency Program, RGH
Goals

• Discuss how traumatic events affect coagulation of patient

• Steps ED doctor can take to prevent and treat coagulopathy

• New technology and how can help guide trauma care
Trauma

- Massive hemorrhage: 50% if trauma deaths
- Coagulopathy: 7x increase in mortality
Triad of Death

Coagulopathy

Acidosis

Hypothermia
Coagulopathy
Acute Endogenous Coagulopathy

- Trauma
 - Hemostatic Cascade
 - Hemorrhage
 - Shock
 - Hypoxia
 - Acidosis
 - Traumatic Coagulopathy
 - Fibrinolysis

ROCHESTER REGIONAL HEALTH
Acute Traumatic Coagulopathy

- Brohi, J Trauma, 2003

- 25% of patients arrived to ED COAGULOPATHIC
Acute Traumatic Coagulopathy

- No correlation between fluid and coagulopathy
Endothelial Glycocalyx

van den Berg, Vink & Spaan, Circulation Research 2003, 92: 592-594
Trauma and Endothelium

Normal

Ischemia
Endothelial Breakdown

- Glycocalyx
 - Endothelial cell
 - Tight junction

Inflammation:
- Heparan sulfate
- Syndecan-1
- Hyaluronan
- Versican
- Breakdown of endothelial glycocalyx and tight junction

Coagulation:
- Capillary leakage syndrome
- Hypoxia, edema, MODS

Normal

Trauma

Physiologic
Pathologic (Trauma and Shock)
Prevent the “Lethal Triad”
Damage Control Resuscitation (DCR)2

- Prevent Hypothermia
 - Warm the patient
 - Blood products through fluid warmer

- Massive Transfusion
 - Early transfusion of blood products
 - Minimize IVF

- Permissive Hypotension
 - Don’t ‘pop the clot’

- Administration of TXA
DCR – Preventing Hypothermia

• Hypothermia:
 • Increased heat loss
 • Decreased heat generation

• ↑coagulation times

• Maintaining normothermia shown to improve survival\(^{13}\)
DCR - Massive Transfusion

• Military Conflict: whole blood

• Borgman, J Trauma 2007³
PROMMTT10

- Holcomb, JAMA Surgery, 2013

- Early use of plasma/platelets -> Improved survival
PROPPR11

- Consistent transfusion rations
 - 1:1:1 vs 1:1:2

- No mortality difference
MTP

Start within minutes

Balanced Ratio
Who Gets MTP?

• Nunez, J Trauma, 201012

• Predictors:
 • Penetrating Mechanism
 • SBP ≤ 90
 • HR ≥ 120
 • Positive FAST

\[\geq 2 \rightarrow 85\% \text{ sensitive, } 86\% \text{ specific} \]
MTP at RGH

Order Sets
ED Massive Transfusion

- Massive Transfusion Protocol
- Massive Transfusion Orders

IF THE PATIENT IS ACTIVELY BLEEDING AND HAS RECEIVED OR IS LIKELY TO RECEIVE GREATER THAN OR EQUAL TO 6 UNITS OF PRBC'S IN 2 HOURS (OR AFTER 2 UNITS IN 2 HOURS FOR CHILDREN LESS THAN AGE 12), CONSIDER ACTIVATING THE MASSIVE TRANSFUSION PROTOCOL (MTP) TO PREVENT COAGULOPATHY.

For CRISIS orders (near code situation) call Blood Bank IMMEDIATELY then place orders.

RGH 2-4083
Newark 3-2380
CSH call 315-462-1600: Dial, 4 then 3, to get directly to Blood Bank
Unity call x1129 from within hospital. Call 585-723-7040 x1129 if calling from outside
CPH/GH call 315-265-3300 x1208
MH call 315-769-4282

For STAT orders (blood needed within 1 hour) place orders, then CALL Blood Bank
R GH 2-4083
Newark 3-2380
CSH call 315-462-1600: Dial, 4 then 3, to get directly to Blood Bank
Unity call x1129 from within hospital 585-723-7040 x1129 if calling from outside
CPH/GH call 315-265-3300 x1208
MH call 315-769-4282

☐ MTP PANEL

- Post-Transfusion Labs
- Additional SmartSet Orders

Click for more
DCR - Permissive Hypotension

- Sterns, Academic Emergency, 1995
 - Resuscitated to MAPs of 40, 60, 80

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Survival Time and Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survival Time (min)</td>
</tr>
<tr>
<td>Group I</td>
<td>58 ± 7</td>
</tr>
<tr>
<td>Group II</td>
<td>57 ± 8</td>
</tr>
<tr>
<td>Group III</td>
<td>44 ± 12*</td>
</tr>
</tbody>
</table>
Table 5. Outcome of Patients with Penetrating Torso Injuries, According to Treatment Group.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>IMMEDIATE RESUSCITATION</th>
<th>DELAYED RESUSCITATION</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival to discharge — no. of patients/total patients (%)</td>
<td>193/309 (62)*</td>
<td>203/289 (70)†</td>
<td>0.04</td>
</tr>
<tr>
<td>Estimated intraoperative blood loss — ml‡</td>
<td>3127±4937</td>
<td>2555±3546</td>
<td>0.11</td>
</tr>
<tr>
<td>Length of hospital stay — days§</td>
<td>14±24</td>
<td>11±19</td>
<td>0.006</td>
</tr>
<tr>
<td>Length of ICU stay — days§</td>
<td>8±16</td>
<td>7±11</td>
<td>0.30</td>
</tr>
</tbody>
</table>

- Immediate IVF
 - Promoted ongoing hemorrhage
 - Hydraulic disruption of thrombus
 - Dilution of coagulation factors
DCR - TXA for Trauma Patients

Figure 2: Mortality by days from randomisation

<table>
<thead>
<tr>
<th>Cause</th>
<th>Tranexamic acid (n=10,060)</th>
<th>Placebo (n=10,067)</th>
<th>RR (95% CI)</th>
<th>p value (two-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any cause of death</td>
<td>1463 (14.5%)</td>
<td>1613 (16.0%)</td>
<td>0.91 (0.85-0.97)</td>
<td>0.0035</td>
</tr>
<tr>
<td>Bleeding</td>
<td>489 (4.9%)</td>
<td>574 (5.7%)</td>
<td>0.85 (0.76-0.96)</td>
<td>0.0077</td>
</tr>
<tr>
<td>Vascular occlusion*</td>
<td>33 (0.3%)</td>
<td>48 (0.5%)</td>
<td>0.69 (0.44-1.07)</td>
<td>0.096</td>
</tr>
<tr>
<td>Multiorgan failure</td>
<td>209 (2.1%)</td>
<td>233 (2.3%)</td>
<td>0.90 (0.75-1.08)</td>
<td>0.25</td>
</tr>
<tr>
<td>Head injury</td>
<td>603 (6.0%)</td>
<td>621 (6.2%)</td>
<td>0.97 (0.87-1.08)</td>
<td>0.60</td>
</tr>
<tr>
<td>Other causes</td>
<td>129 (1.3%)</td>
<td>137 (1.4%)</td>
<td>0.94 (0.74-1.20)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Data are number (%), unless otherwise indicated. RR=relative risk. *Includes myocardial infarction, stroke, and pulmonary embolism.

Table 2: Death by cause
Table 2: Vascular occlusive events, need for transfusion and surgery, and level of dependency

<table>
<thead>
<tr>
<th></th>
<th>Tranexamic acid (n=10,060)</th>
<th>Placebo (n=10,067)</th>
<th>RR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular occlusive events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any vascular occlusive event</td>
<td>168 (1.7%)</td>
<td>201 (2.0%)</td>
<td>0.84 (0.68-1.02)</td>
<td>0.084</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>35 (0.3%)</td>
<td>55 (0.5%)</td>
<td>0.64 (0.42-0.97)</td>
<td>0.035</td>
</tr>
<tr>
<td>Stroke</td>
<td>57 (0.6%)</td>
<td>66 (0.7%)</td>
<td>0.86 (0.61-1.23)</td>
<td>0.42</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>72 (0.7%)</td>
<td>71 (0.7%)</td>
<td>1.01 (0.73-1.41)</td>
<td>0.93</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>40 (0.4%)</td>
<td>41 (0.4%)</td>
<td>0.98 (0.63-1.51)</td>
<td>0.91</td>
</tr>
<tr>
<td>Need for transfusion and surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood product transfused</td>
<td>3069 (30.4%)</td>
<td>3160 (31.3%)</td>
<td>0.98 (0.96-1.01)</td>
<td>0.21</td>
</tr>
<tr>
<td>Any surgery</td>
<td>4814 (47.9%)</td>
<td>4836 (48.0%)</td>
<td>1.00 (0.92-1.03)</td>
<td>0.79</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>1040 (10.3%)</td>
<td>2163 (10.5%)</td>
<td>0.98 (0.91-1.07)</td>
<td>0.67</td>
</tr>
<tr>
<td>Chest surgery</td>
<td>1515 (15.1%)</td>
<td>1525 (15.1%)</td>
<td>1.00 (0.93-1.06)</td>
<td>0.91</td>
</tr>
<tr>
<td>Abdominal surgery</td>
<td>2487 (24.7%)</td>
<td>2555 (25.4%)</td>
<td>0.97 (0.93-1.02)</td>
<td>0.28</td>
</tr>
<tr>
<td>Pelvic surgery</td>
<td>683 (6.8%)</td>
<td>648 (6.4%)</td>
<td>1.05 (0.95-1.17)</td>
<td>0.31</td>
</tr>
<tr>
<td>Median (IQR) units of blood product transfused†</td>
<td>3 (2-6)</td>
<td>3 (2-6)</td>
<td>..</td>
<td>0.59†</td>
</tr>
<tr>
<td>Dependency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No symptoms</td>
<td>1483 (14.7%)</td>
<td>1334 (13.3%)</td>
<td>1.11 (1.04-1.18)</td>
<td>0.0023</td>
</tr>
<tr>
<td>Minor symptoms</td>
<td>3054 (30.4%)</td>
<td>3063 (30.4%)</td>
<td>1.00 (0.96-1.04)</td>
<td>0.94</td>
</tr>
<tr>
<td>Some restriction</td>
<td>2016 (20.0%)</td>
<td>2069 (20.6%)</td>
<td>0.97 (0.92-1.03)</td>
<td>0.36</td>
</tr>
<tr>
<td>Dependent (not requiring constant attention)</td>
<td>1294 (12.9%)</td>
<td>1271 (12.6%)</td>
<td>1.02 (0.95-1.09)</td>
<td>0.63</td>
</tr>
<tr>
<td>Fully dependent</td>
<td>696 (6.9%)</td>
<td>676 (6.7%)</td>
<td>1.03 (0.93-1.14)</td>
<td>0.57</td>
</tr>
<tr>
<td>Alive (disability status not known)</td>
<td>54 (5.5%)</td>
<td>41 (4.4%)</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>Dead</td>
<td>1463 (14.5%)</td>
<td>1613 (16.0%)</td>
<td>0.91 (0.85-0.97)</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Data are number (%), unless otherwise indicated. Counts are for numbers of patients with at least one such event. RR=relative risk. *Includes both fatal and non-fatal events. †Transfused patients only. ‡Analysis used logarithmic transformation of mean units of blood products transfused.
Balanced Resuscitation

- Minimize Crystalloid
- 1:1:1 Product Ratio
- TXA
- Permissive Hypotension
Do not define the overall process, just provide pieces of the process!
Thrombelastography (TEG)
• **R**: Reaction Time = Thrombin Generation

• **α**: Clot Formation Time = Fibrinogen

• **MA**: Maximum Amplitude = Platelets

• **Ly30**: Lysis at 30min = Fibrinolysis
Fancy Glasses

ROCHESTER REGIONAL HEALTH
Does it Work?

• Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy

50% reduced mortality
Primary Fibrinolysis in Trauma

• Primary Fibrinolysis – 34% of patients who required MTP
Hyperfibrinolysis

• Cotton, J Trauma Acute Care Surg7

• Hyperfibrinolysis = \ (~2\%)

• Each 1L of crystalloid – 15\% increased odds of hyperfibrinolysis
Hyperfibrinolysis

Mortality rate by percent fibrinolysis

LY-30% 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Mortality rate (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Fibrinolysis and Mortality

The diagram illustrates the percent mortality associated with different levels of fibrinolysis:

- **Shutdown Ly30 < 0.8%**
- **Physiologic Ly30 0.9–2.9%**
- **Hyper Ly30 > 3%**

The graph shows an increasing mortality rate as the fibrinolysis level increases from shutdown to hyper.
Improved Blood Product Use

- Kashuk, Transfusion, 2011\(^9\)
- More efficient transfusion management?
What Have We Learned?

• Many trauma patients ARRIVE to the ED coagulopathic

• Damage Control Resuscitation

• Thromboelastography: bedside application for better trauma care
References

References

